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Abstract

A difficult but potentially powerful advanced software engineering concept is to modify
existing, compiled, closed-source applications to identify and potentially remedy security
and privacy issues. This technically challenging concept is very applicable to the Android
ecosystem, but existing approaches are bespoke, use-case specific implementations. In this
paper we present Stigma, an open-source software tool which can make modifications to
commodity Android applications. Our tool allows researchers and skilled users to define
their own desired modifications for a range of purposes such as security and privacy analysis,
improving app functionality, removing unwanted features, debugging, profiling, and others.
We evaluate Stigma in terms of compatibility, efficacy, and efficiency on approximately 100
commodity Android applications.

1 Introduction

Most Android smartphone apps are closed source software, which makes them rigid and opaque
in operation. Generally, their precise functionality cannot be easily known or changed, and the
data they operate on cannot easily be known or tracked. Culturally, this has bread numerous
concerns of privacy, security, and convenience [24} 25 16]. Application functionality is generally
intricate and clandestine. Although power users are better able to effectively navigate the
complex digital landscape, regular users are overwhelmed [17, 2], 20]. All users should remain
the owners of their data and their software. They should be able to know what their installed
applications are doing, make adjustments to the behavior, and monitor the use of their own
private information.

Modifying or tracking the execution of Android apps can allow users to perform a variety of
tasks from tracking use of sensitive information, stripping out advertisements, enhancing perfor-
mance, searching for security vulnerabilities, improving existing functionality, adding features,
or fixing bugs. But, modifying pre-compiled, closed source software is generally only done in
very limited ways via custom-fit, temporary, and largely manual processes. Reverse engineering,
“cracking”, modding, re-packaging, instrumenting, and even software profiling are all examples
of users working to modify existing software in various ways to achieve different goals. In the
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Android community these efforts are largely disconnected and lack transcending, big-picture
strategies. A single tool that could modify closed source Android app code in a generic way
could transform and unite these communities; empowering users to take back some control of
the software they study, build, and use every day.

Modifying closed source Android applications is challenging. Android applications are com-
monly written in a higher-level language: Java or Kotlin. They are distributed as APK files,
the code contained therein has already been compiled to the DEX machine code / byte-code
format. DEX is rather obscure and although there is documentation about it online, few people
are familiar with it and even fewer have any amount of practice writing or even editing it. It has
several esoteric constraints, non-obvious syntax rules, and few conveniences most programmers
take for granted (e.g., for loops). Furthermore, the code structure, variable names, comments
and other important features from the original source code are removed during compile time.
So, modifying DEX is extremely difficult and only barely feasible for researchers and other
experts. Deep understanding of the original code, as well as large, sophisticated changes to
the DEX byte-code are simply not practical, even for experts. Finally, the Android framework,
build-system, and API in general are elaborate and complex. This leads to app modification
systems that are one-off, custom, bespoke solutions. These are usually single-purpose, require
onerous manual steps, and usually have significant usage and functionality limitations.

An application that contains even a few lines of code that inadvertently break the constraints
and rules of the DEX language will not run. Such an app may crash at runtime due to invalid
operations, get rejected by the Java verifier at runtime, or get rejected by the assembler. DEX
has an unofficial, non-sponsored assembly language called Smali [5]. Documentation of smali is
minimal and development tools for it are inadequate.

All research efforts in building such a system leave the implementation inadequately defined.
Among the published literature, we were not able to find any systems that are easily obtainable
in source code or binary format [30, 22 3T]. These works cannot be re-created by others
and so their results cannot be easily replicated, embraced, or integrated into new systems.
Based on the way these tools are described in the literature, it seems that they were not
designed for extensibility, but rather always a single purpose. For example, there are several
systems that seek to insert code into apps to track sensitive user information. All of these
systems are independent implementations and have significant usability and/or compatibility
limitations [10]. Furthermore, these legacy tools often make use of a wide variety of dependency
projects, which are often orphaned or poorly maintained. New research efforts in this area are
currently stalled, as any researchers seeking to improve upon these systems must first complete
the arduous task of re-implementing a robust DEX byte-code modification tool.

We present Stigma [6]; an open source software tool which can make arbitrary modifications
to commodity Android apps. Stigma is extensible and freely available under the GPLv3 open
source license. It is designed with a plugin framework that allows users and researchers to define
desired modifications to their target Android app(s). The contributions of this paper are as
follows:

e We present the design and prototype implementation of Stigma, an open source and
extensible software tool for modifying commodity Android apps.

e As an exemplary use of Stigma, we implement (and also distribute in open source) two
Stigma plugins. The first is a dynamic information flow tracking (DIFT) plugin and the
second is a Shared Preferences extraction plugin.

e We highlight several esoteric constraints and pitfalls of the dex/smali language. These
constraints are difficult to discover and, to the best of our knowledge, have not been
documented extensively elsewhere.



e We evaluate Stigma and our two plugins on approximately 100 popular Android applica-
tions. We seek to measure the compatibility of Stigma with arbitrary Android applications
as well as the overhead incurred on the application.

Stigma is a python program, which runs on any X86_64 computer. Users first obtain the
APK for an app which is used as input to Stigma. The plugin(s) determine what modifications
Stigma makes to the application. A modified version of the APK is output, which can be run
on any target device that the original APK was compatible with. The dependencies Stigma
relies on are minimal and, at the time of writing, are all actively maintained. It is our hope
that this work invigorates new research in privacy, security, performance and other aspects of
Android applications.

2 Related Work

The most closely related works from the research literature are “Dr. Android and Mr. Hide”
[15], and “SIF” [14] in which smali assembly code is modified directly and automatically. Dr.
Android makes limited modifications in the narrow scope of implementing a more precise fine-
grained permission system. SIF asks the user to specify their desired modification in a language
called “SIFScript.” The SIFScript includes the functionality itself as well as the general places
and times in which the functionality should be inserted (called the “workload”). These works
were published in 2012 and 2013 respectively. They seem to be orphaned and don’t appear to
be readily available online. Due to their age, it is very likely that they are no longer compatible
with modern Android.

Some less formal community based efforts include the Cydia Substrate for Android [I], the
(apparently defunct) Xposed Framework, and Android DDI [4] which allows the user to write
their modifications using the Java Native Interface (JNI). These systems are also orphaned
and likely obsolete due to changes implemented in Android. Namely, the introduction of the
ART runtime in 2015. None of these projects seem to have accompanying publications in
peer-reviewed conferences or journals.

There are many many projects from the literature that aim to modify or analyze closed
source Android apps in various ways. Many are static analysis only. Of those that are dynamic
and actually involve executing the target app(s), most require substantial changes to the Android
OS, the Android Framework, the dex2oat compiler, rooting, or changing other aspects of the
platform / device itself instead of the app. These approaches are difficult for others to setup,
brittle, and will become outdated quickly as the Android OS is continually updated by its
parent Google. In contrast, Stigma is carefully designed to follow the semantics of smali / dex
byte-code itself, which is a standard that hasn’t changed substantially since the introduction of
Android.

2.1 DIFT Systems

One relevant sub-field is that of dynamic information flow tracking (DIFT), in which code is
added into the target app to track and alert the user about the use of their own sensitive
and/or personal, identifiable information (PII). This is the idea implemented by our Stigma
plugin described in Section Some of the most relevant works in this area include ViaLin
[9], TaintMan [30], AppCaulk [22], ConDySTA [32] and Capper [31]. These systems each make
numerous design choices often lacking any consistency with others. They often fail in describing
the details of the numerous concepts needed to successfully modify smali code such as higher-
numbered register allocation, impacts on control flow, and the constant reference pool limits. In
contrast our description these challenges and our solutions is given in Section [6] Further, unless
otherwise noted these systems do not seem to be available or practically usable by others.



ViaLin [9] modifies the byte-code of target applications directly. Although their implemen-
tation is not described in great detail it is available online [§]. The required setup is error-prone
and somewhat cumbersome, requiring the user to make numerous manual changes to a specific
version of the AOSP.

TaintMan [30] introduced the idea of system-wide DIFT through smali modification, and
touches upon some important ideas like taint tag storage and persisting taint-tags through
function calls. It also introduces novel techniques like system library reference hijacking and
“strict control dependence” implicit information flow tracking.

AppCaulk [22] attempts to only track information flows on relevant control flow paths from
a source of sensitive information to a sink. Such paths are first identified via static analysis,
and then DIFT instructions are inserted into the smali code to perform dynamic analysis on
those paths only. The system relies on method summaries to model behavior for system library
code, which cannot be modified. For example, “get” methods taint their return tag with the
bit-wise OR of the parameters.

Other DIFT systems, targeted at Android, which have released software include [19, [I8],
12, 28], 26], 13], 23]. However, none of these works utilize the foundational technique of smali
byte-code instrumentation. These older tools have been somewhat prolific, because they are
available for others to use and analyze [10]. Their approaches are fundamentally different from
modifying smali byte-code though. And because of this they exhibit very limited compatibility
across the Android ecosystem and over time.

3 Stigma System Design

Stigma [0] is a fully open-source python program that accepts an APK file as input, and outputs
a modified version of that APK file. The modifications made are specified by plugins, which
are written by the user. As a proof of concept, Stigma comes with two pre-written plugins.
One performs DIFT, which seeks to track the use of location (GPS coordinate) data. The other
inserts code such that the app prints the keys and values of the default ”Shared Preferences”
database when the app is launched. Further information about these two plugins is given in
Sec. @ and 5] Other plugins can be imagined and implemented that allow researchers and other
power users to specify precisely what modifications should be made to the app.

An overview of the architecture of the system can be seen in Fig. First () a third
party tool apktool[2], is used to extract the Dalvik byte-code (DEXE[) from the application and
convert it to the assembly-like smali[5] language (2). Stigma then parses these smali files into
an intermediate representation (IR) (4). Stigma maintains in-memory representations (objects)
for smali classes, smali methods, registers, and basic data-types (32-bit, 64-bit, and object
references). Plugin logic is applied to the IR. Then in step (6), the code must be “re-balanced”
to account for the constant pool limits as described in Section [6.4] Finally, the modified IR
is written back to smali files on disk. The modified smali files (7), along with any new smali
classes added by the plugin(s), are re-packed using the same third party tool apktool (8). The
end result is an APK, digitally signed by Stigma, which can be installed on any device for which
the original, input APK was compatible.

Stigma parses all of the application smali code. As mentioned previously, the smali classes,
methods, instructions, registers, and types of the original app are all represented in-memory
by python objects. Stigma also builds a control flow graph for every method in the app, and
does type analysis such that it can determine the known type of every data value stored in
every register at any point in the execution. Of course, there are many points where the type

'DEX is designed to be run on a Java Virtual Machine (JVM), but in the modern Android ecosystem, it
probably never will be. Instead it is immediately re-compiled, at install time, from DEX to native machine code
matching that of the install device via the DEX20AT compiler. The app is then run on the device via the
Android RunTime (ART).
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information is unknown or undefined. For example, at the very beginning of a method most of
the temporary, general purpose registers are empty and therefore have no type.

3.1 Allocating Registers

Any non-trivial plugin to Stigma will need to make use of registers to store data. Unfortunately,
smali methods are defined (ultimately from the original Java code) such that they have a minimal
number of registers. All of the registers originally allocated for the method are well utilized
by the original functionality of that method. A key research challenge is how to allocate more
registers for use by plugins.

Smali has only general purpose “v” registers in the range [vO, v65535]. But, an important
aspect of smali is that most instructions can only operate using registers in the range [v0,
v15]. For methods that require more than 16 registers, there are special instructions move/16
and move/from16 that can operate on the entire register range. Using these special move
instructions it is possible to shuffle values in and out of lower- and higher- numbered registers
in order to perform the desired instructions using lower-numbered registers only. Ordinarily, any
necessary “shuffling” is handled entirely by the Java to dex compiler: dx. But, Stigma inserts
new instructions / registers into methods after compilation. Adding registers to a method is
not straightforward and has complex knock-on effects due to the register range limit of most
instructions.

1 | .method public foo(Ljava/lang/String;I)D
2 .locals 5

Listing 1: Example of a smali method definition signature

The first line of any smali method (following the method signature) is always a “.locals”
compiler directive indicating how many registers the method uses. Listing (1| shows a method
foo() which takes a String and an Integer as input parameters and returns a Double. The
.locals directive indicates that there are 5 local registers in the method, which act somewhat
like local variables. This is used by the the dex2oat compiler (or the legacy Dalvik JVM) to
help determine the stack frame size when this function is invoked. Each of the input parameters
is also assigned a register (with a pX alias). p0/v5 stores the implicit “this” parameter, since
this method is not static. This makes for a total of 8 registers as shown below.

vO (local register) vl (local register)

v2 (local register) v3 (local register)

v4 (local register) vb=p0 (1st parameter, ‘this’)
v6=pl (2nd paramter, java/lang/String)

v7=p2 (3rd parameter, I=integer)

In order to allocate another register, we can re-write the .locals directive from 5 to 6.
This creates a new, unused, local register v5, but also shifts p0, p1, and p2 to occupy registers
v6, v7, and v8 respectively (a total of 9 registers). Multiple registers can be allocated this way,
effectively expanding the size of the function call stack frame. Stigma increases the .locals
value for every method in the project.

Adjusting the .locals directive in this way causes knock-on effects, since the original
method code may refer to the registers in the original arrangement (e.g., expecting v5 to contain
the ‘this’ reference). To resolve this, Stigma implements a procedure we refer to as growing
the method. For methods that total more than 16 registers after increasing the .locals di-
rective, the method may contain invalid instructions. This is because the original instructions
of the method likely contain pX references which now, after increasing .locals, correspond to
vY registers in which Y > 15. Recall, most smali instructions do not support higher-numbered
registers.



To solve this problem, Stigma adds additional move/16 operations to move the parameter
values back to their original locations. And, for all instructions throughout the method that
reference any pX register, “pX” is replaced with the corresponding “vY.” In the previous example
pO would be moved from v6 back to v5 and all instances of p0 in the method would be replaced
with v5. After all the parameters are moved, v8 is left completely unused. Following this
procedure, it is straightforward to trivially grow a method by an arbitrary amount of registers.
Of course, for some methods the newly allocated registers might be larger than v15.

3.1.1 JIT Register Acquisition

When interleaving instructions, registers must be selected for use therein. For many instructions,
these should be lower-numbered registers. So, before passing control to a plugin, Stigma first
attempts to acquire a certain amount of lower-numbered registers (vX where X < 16). Stigma
makes a best-effort attempt, sourcing registers from three distinct categories. First, Stigma
identifies any registers not yet used in the original program code (up until this point). Second
the “top end” registers, that were allocated by growing can be used if they are lower-numbered.
And, third, as a last resort, Stigma can acquire some registers by inserting necessary move-*
instructions to free up lower-numbered registers at the precise point in the code at which they
are needed. The values stored therein are moved to high valued registers, several of which are
always available since the top X registers were created by Stigma earlier when growing. They
are moved back immediately following the new instructions inserted.

Should such move operations be necessary, it is important to use the correct move variant
according to the data type being move-ed. Since the plugin / plugin author does not know
the type(s) of all data stored in all registers, it is necessary for Stigma to insert any such move
operations. Stigma performs rigorous static analysis to identify the type of every value in every
register at every point in the method.

1. Word-sized (32-bit) values (int, float, boolean, etc.) require move/16.

2. Word-sized object references require move-object/16.
This includes arrays and “special” objects such as Exceptions and “this.”

3. Double-word-sized (64-bit) values (long and double) require move-wide/16.
Such types actually use two consecutive registers (e.g., v2 and v3) to store a single value
since smali registers are all only 32-bits wide.

Stigma operates opportunistically and invokes the plugins whenever possible. But, in some
extreme cases (for example when none of the register types are known) it may not be possible
to acquire enough free, lower-numbered registers. In such circumstances plugin handlers cannot
be invoked.

3.2 Extensible Plugin Framework

Without any active plugins, Stigma will not make any changes to the target app. How should
intended changes be specified? In our system, plugins specify callback handler functions that
are invoked as the original application code is linearly scanned. These handlers can be invoked
at various key points in the target app. First they can be called when the app is launched.
Second they can be called at the start of each method of original smali code. Finally, the most
intricate method is for the plugin to specify a callback handler function individually for each of
the 200+ types of smali instructions.

The callback handler function itself is written by the plugin author / user, and registers or
“signs-up” with Stigma, specifying which key points it should be invoked on. These functions
return new smali code that is inserted into the app at the key point.



invoke-virtual {vl, pl}, Ljava/lang/StringBuilder;->append(I)Ljava/lang/StringBuilder;

invoke-virtual {v1}, Ljava/lang/StringBuilder;->toString()Ljava/lang/String;

Tt W N~

move-result -object vl

Listing 2: Example of smali method calls to the StringBuilder.append(int x) and
StringBuilder.toString() methods. The parameter passed (v1) in this example is the in-
stance of the StringBuider on which the method is being called. After execution of line 5, v1
contains a String.

Stigma provides an “Instrumenter” class, which has a method sign up(). Plugins can call
the sign up() method in order to register callbacks as shown in Fig.

Instrumenter.sign up ("invoke-virtual", INVOKE instrumentation, 2, True)

Smali instruction being “signed-up” for  Callback handler name Number of registers requested Callback returns new instructions
containing original instruction(s)
Figure 2: Example of a call to sign_up() made by a plugin registering a callback handler for
the invoke-virtual smali instruction.

Some common operations actually consist of two lines of smali code that must be used in
sequence. Listing [2] demonstrates such an operation. A call to the StringBuilder.append ()
method consist of a single invoke-virtual instruction on line 3. Immediately following is a
move-result-object instruction to capture the returned value. Any move-result-* instruc-
tion must immediately follow some invoke-* instruction, since the purpose of move-result-*
instructions are to store the returned values of method calls. Should Stigma interleave other
instructions between these two instructions the entire class will be made invalid.

To account for this case, both instructions are passed to the handler. When sign up() is
called, the final parameter passed is set to True, which allows the handler to include the original
two instructions along with its proposed new lines. This allows the plugin to appropriately
interleave instructions before the invoke-* instruction or after the move-result-* instruction
(or both) depending on what is necessary / desirable.

4 DIFT Plugin

As a proof of concept, we design and implement plugin for Stigma that implements dynamic
information flow tracking (DIFT) of sensitive user information. Our plugin registers a variety
of handlers for many smali instructions to (1) originate, (2) propagate, and (3) terminate tag
values. It also registers a handler for the start of each method to propagate tag values from
the function parameters / inputs. The plugin essentially specifies new smali instructions, which
Stigma amongst the original app instructions, to implement the logic of sensitive information
marking and tracking.

4.1 Tag Origination

For (1) tag origination, Stigma identifies several key functions from the Android API that can be

used to obtain sensitive data. For example, the method call Landroid/location/LocationManager;->
getLastKnownLocation(Ljava/lang/String;)Landroid/location/Location;, which is one
method used to obtain the device’s GPS coordinates. When this instruction/method call is
identified in the smali assembly code, our Stigma plugin interleaves instructions to store the tag

value 2.0 for the register used to store the return value.



4.2 Tag Propagation

When a tag value is placed into a register, that tag value should flow as the data in that register
flows. For example, if the data is copied to another register or passed to a function. Our DIFT
plugin needs to interleaves new smali instructions to move the tag value as well.

Some instructions do not necessitate tag propagation at all, such as goto, if-eq, throw, and
packed-switch. But, most do. For example, roughly 85 of the almost 250 smali instructions
are binary operations. Consider a binary smali instruction that might occur in an app (before
any new instructions are added by any plugin(s)): add-long v2, v7, v0. This instruction
adds the long values in registers (v7,v8) and (v0,v1). The result is stored in (v2,v3). Because
v7 and/or vO may contain sensitive information, the tag values associated with those registers
must be propagated to the tag for v2. For a typical instruction, roughly 5 - 10 new instructions

may be added to the program by the plugin to achieve this. An example of this case is shown
in Listing

1 |# IFT INSTRUCTIONS ADDED BY STIGMA for ADD-LONG
2 | const/16 vi1, 0x0

3

4 |sget v12, Lnet/sstorage/StorageClass2;->foo_v7:F
5

6 |add-float vil, vil, vi12

7

8 | sget v12, Lnet/sstorage/StorageClass2;->foo_vO:F
9

10 |add-float vi1, vi1i, vi12

11

12 | sput v11, Lnet/sstorage/StorageClass2;->foo_v2:F
13

14 |# IFT INSTRUCTIONS ADDED BY STIGMA for ADD-LONG
15

16

17 |add-long v2, v7, vO // original instruction

Listing 3: Smali code instrumented in order to propagate taint-tag values.

First, on line 2 the value 0 is placed into register v11. This is necessary or the application
won’t pass runtime verification done by the Java verifier. Specifically, instructions that operate
on data (i.e., add-float on line 6) will not pass verification unless the operand register(s)
contain value(s) of the correct type(s). Lines 4 - 10 obtain and merge together the tag values
for registers v7 and v0 using simple addition. Lines 4 and 8 obtain the current tag for registers
v7 and vO respectively. Line 6 is technically unnecessary, but is present as an idiosyncrasy of
our implementation. Note, registers vi1l and v12 were introduced into the method exclusively
to operate on tag values as described in Section They are not used by the original method
logic whatsoever ensuring that they can be used safely to store tag values.

4.2.1 Propagating Tags Across Function Calls

Well written Java code makes heavy use of methods. In smali code, methods are called using
one of the invoke—* instructions and the result (if any) can be captured by an immediately
subsequent move-result instruction. An example is shown in Listing

In order to track sensitive information in and out of method calls, we split all methods into
two categories; “internal” and “external”. Internal methods are all those defined in the smali
code contained in the target APK file. External methods are those for which their smali source
code is unattainable (see Section The examples shown in Listing |2 are calls to external
methods, since java/lang/StringBuilder is provided by the run-time.

For internal method calls, the tags for the arguments (at the call site) need to be propagated
to the parameters (at the definition / callee site). At the call site, new instructions are added



just before the function call. The tags for the method arguments are read (e.g., public static
CallingClass_foo_v1_TAG:F) and then written into the tag locations for the method parameters
at the callee site (e.g., public static CalleeClass_bar_pO_TAG:F).

When a method returns (keeping in mind there may be more than one return point) the
returned value may contain sensitive information. Therefore, for every return instruction, the
tag value of the returned register is copied into the special global tag field public static
return field TAG:F. At the call site, the tag value is extracted from that field and propagated
to the specified destination register in the move-result instruction.

For external methods we do not have access to any of the method’s smali code. Our solution
is to combine the tags of the parameters passed using the add-float operation. The resulting
tag value is then propagated directly to the register specified in the subsequent move-result
instruction (when present).

4.2.2 Limitations

Depending on the instruction semantics, and the context of the instruction, it may be possible
to achieve tag propagation with less overhead. Such optimizations are a key novelty of some
related literature [22, [30], but are outside the scope of this work.

In our current implementation, array instructions (new-array, array-length, aget, aput,
etc.) are implemented in the same primitive way that many other works handle them. A single
tag is allocated for the entire array.

Some functions do not have a subsequent move-result instruction. For example, the call to
StringBuilder.append() on line 1 of Listing[2] The append () changes the state of the String
and returns nothing. We do not propagate any tags in such situations, leaving this to future
work.

4.3 Tag Termination

For (3) tag termination, Stigma identifies certain functions which indicate data transmission. In

the current implementation this is limited to the various write () methods of java/io/OutputStreamWriter;
and java/io/OutputStream;. These are used in network socket I/O and file I/O. When such a

method is identified, our plugin writes new instructions into the application which (a) retrieves

the tag value associated with each of the input parameters and then (b) if the tag value of

any parameter is not zero, writes an entry to the Android system log (logcat) alerting the user

that sensitive information is being leaked. More sophisticated remediation, such as differential

privacy analysis [27, 1], 29], is a potential area of future work.

4.4 Tag Storage

Where to store the tag data in an existing app/program is an open research question. To main-
tain broad compatibility, the tag information cannot be stored in the Dalvik virtual machine,
or the ART runtime. We outline several possible locations below, which are compatible for a
smali instrumentation based approach.

e Store tags in the fields of new classes added to the application (Stigma implementation).
e Store tags in a file on the filesystem that is world read/write-able.

e Store tags in the function call stack (expanding each stack frame to accommodate tags as
necessary; a technique roughly described in other works [13], 30]).

e Store tags in a secondary, dedicated application that implements an Android ContentProvider
and/or wraps a database.

10



It may seem attractive to store the tags in new fields added to the existing classes in the
application. This likely breaks the logic of the application rendering it unable to compile
and/or run. This is due to software practices such as object-relational databases, serialization,
and reflection which require classes to have a certain set of specific fields. We found at least
one app (Alibaba) that made assumptions about the instance fields of some classes in order to
interact with SQLite schema. Additionally, some smali files / classes may not be allowed to
carry any fields at all such as interface classes.

Internally, Stigma generates a list of StorageClass smali classes, each of which stores tags
in public, static fields. Each StorageClass has a configurable limit of m fields. Plugins can call
add_taint_location(), which automatically creates additional StorageClass instances when
more then m fields are requested. An in-memory cache of mappings from method registers to
their tag locations is maintained for fast retrieval while Stigma/the plugin is processing the app.

5 Shared Preferences Extraction Plugin

“Shared Preferences” is an often used API in the Android framework. It allows app developers to
store key-value pair information. Traditionally, it is intended to store the user’s preferences that
are specific to an app (e.g., repeat or shuffle in a music player app). Occasionally, developers
store things that they should not, introducing security risks and vulnerabilities. Examples
include plaintext passwords, booleans to control paid-only features, and encryption keys.

We wrote a plugin for Stigma that forces the app to print the entire contents of the default
Shared Preferences database when the app is launched. This allows the user to search for
suspicious or obviously improper use. Although there are other methods of obtaining the Shared
Preferences contents, ours does not require rooting or modifying the OS / device. Additionally,
our approach operates during runtime. Which is important, since applications that have not
been run in a realistic way will not have added any items to the Shared Preferences database.

6 Critical Concepts and Research Challenges

Some aspects of smali are esoteric and mysterious. We discovered many such details through
careful analysis and reverse engineering. Below we summarize each of four different critical
concepts discovered (Sectionsthrough. This knowledge is critical for researchers building
and working with systems that attempt non-trivial smali modification.

6.1 Obtaining Application Code

Android applications are packaged and distributed as APK files. These contain the applica-
tion manifest (AndroidManifest.xml), and the assets of the application (images, sounds, data
files, etc.). Most importantly, the application’s DEX byte code is included in a file called
classes.dex. For technical reasons, explained in Section [6.4] there may also be classes2.dex,
classes3.dex, and so on. The format of DEX code is public knowledge [3], but it is not human
readable or easy to parse or edit. When an application is installed on a modern Android device,
the DEX code is immediately compiled by the dex2oat compiler to a binary executable com-
patible with the device’s native architecture (e.g., ARM Cortex-A). When classes are loaded
(just prior to run-time) they are validated by the Java verifier. Finally, classes are run with the
Android ART runtime on the device.

There are popular tools such as Jadx [7], which can be used to de-compile Android app
code. Such “DEX-to-Java’ de-compilers can generate equivalent Java code, but they cannot
recreate the actual original Java source code. An additional complexity is that many developers
use obfuscation tools, and even the most popular de-compilation tools generally are not robust
enough to fully de-compile arbitrary apps such that they can be re-compiled.
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Stigma uses a pre-existing tool, apktool [2], which can be used to easily convert the binary
DEX byte-code to a human readable assembly: smali [5]. The smali language consists of roughly
200 different instructions that are essentially a one-to-one mapping of the semantics of DEX
opcodes. There is roughly one smali file for every pre-existing Java class in the project. After
modifying the smali assembly code, the application can be re-packaged into an APK file using
apktool again.

6.2 Cryptographic Signatures

To be run on an Android device, an APK file must be cryptographically signed. By unpacking,
editing, and re-packing the application, the signature is destroyed. Fortunately, the resulting
APK can still be signed by an arbitrary new key. Signing can therefore be achieved using the
standard Java toolchain: keytool and jarsigner. It is important to note that after re-signing,
the application is no longer signed by the original developer. As mentioned in [30] this may raise
compatibility issues if the application checks its own signature, or if it coordinates with other
applications running on the same device that expect to all be signed by the same developer.
Instead of trusting the original developer, the user of the application must trust the new signer.
In this context, that means trusting the authors of Stigma and this work. Because users are
choosing to use Stigma, we feel this is a valid change to the chain-of-trust.

6.3 System Classes, Libraries, and Unattainable Code

Following the method described in Section will not provide access to all of the code of the
target app. Notable categories of unattainable code includes dynamically loaded code, code
generated through Java reflection, and native (C or C++ via JNI) code.

A substantial amount of unattainable code is hidden in system classes such as java/lang/String;.
The authors of TaintMan [30] propose a sophisticated reference hi-jacking technique in order
to replace those system classes on the device with versions that already include DIFT code. In
general, it is outside the scope of this work.

6.4 Reference Pools

As mentioned very briefly in the official Dalvik documentation “There are separately enumerated
and indexed constant pools for references to strings, types, fields, and methods.” [3]. This means
that in a single dex file (comprised of many smali files) all references to (1) strings, (2) types,
(3) class fields, and (4) methods are collected into respective sets. Each set may contain at most
65,535 entries since the pools are enumerated using an unsigned short.

As applications have grown larger and larger, it has become increasingly common for a single
Android application to exceed the 65k limit on one or more of the pools. At the same time,
modifying smali code (e.g., to implement DIFT) will very likely add elements to the pools. To
alleviate this the smali files are distributed into multiple dex files (classes.dex, classes2.dex,
classes3.dex, etc.) such that none of the pools are overloaded.

Properly organizing a collection of smali files into an appropriate number of dex files is not
straightforward, since it is not clear how various smali instructions impact the four pools. To
our knowledge, this relationship is not explained in any pre-existing documentation. The smali
command line tool [5] can be used to create a dex file from a single smali file. The resulting dex
file will likely be unable to run, since it does not even contain some of the necessary foundation
code such as the Android support libraries. But, such a dex file can be analyzed by the dexdump
tool, from the Android SDK, to precisely determine how the code therein contributes to each
pool. Using this toolchain we are able to reverse engineer the relationship between smali code
and the four pools.
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1 | .class public Lcom/example/stigmatestapp/MainActivity;
2 | .super Landroidx/appcompat/app/AppCompatActivity;

3 | .source "MainActivity.java"

4

5 |# static fields

6 | .field static final GREEN_TRANSPARENT:I = 0x6600ff00

7

8 |# instance fields

9 | .field sputgetText:Landroid/widget/TextView;

10

11 |# direct methods
12 | .method public constructor <init>()V

13 .locals O

14

15 .line 19

16 invoke-direct {p0}, Landroidx/appcompat/app/AppCompatActivity;-><init>()V
17

18 return-void

19 | .end method

Listing 4: Sample code used to demonstrate how the constant reference pools are tabulated.
This listing contains 9 string references, 5 type references, 2 field references, and 2 method
references.

Consider the code sample in Listing 4l According to dexdump, the dex file containing only
this class contains 9 string references, 5 class/type references, 2 field references, and 2 method
references.

e Strings (9 total) - The class name and parent class name on lines 1 and 2 account for
one string each. And, line 3 contains a literal string. These strings are used, presumably,
for debugging purposes such as stack traces, and compiler warnings as well as for Java
reflection. Each of the fields declared on lines 6 and 9 contribute two string references
each (one for the identifier, and another for the type). Finally, the method declaration on
line 12 contributes two string references, (one for the method name, and the other for the
method return type).

e Types (5 total) - The class and parent class on lines 1 and 2 are types. The I in the
field declared on line 6 is a type (integer). The TextView referenced on line 9 is a type.
And, the V indicating that the <init> method returns void, is a type. Note that the
reference to AppCompatActivity on line 16 is not counted, because it is redundant with
the reference on line 2.

e Fields (2 total) - This class references only two fields (as declarations) on lines 6 and 9.

e Methods (2 total) - This class references only two methods. The declaration of MainActivity.<init>
on line 12 and the call to AppCompatActivity.<init> on line 16.

Stigma uses this logic to distribute smali files into a number of classesX.dex files appropri-
ately. It is important to note that smali instructions need no modifications or special access
rights in order to reference the classes, fields, and methods of smali files in other dex files.
Access rights are restricted only by the traditional Java access modifiers public, private, and
protected.

6.5 Control-Flow

Adding new smali instructions may influence the control flow even when the new instructions
do not interact with any of the existing program data and do not explicitly alter the flow (if-*,
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return, etc.). When any instruction is added inside a try/catch block, a new path may be
introduced since that new instruction may cause an exception to be thrown. Consequently, new
control flow paths may affect the type verification done during load-time by the Java verifier,
before the newly added paths are even executed.

6.6 Code Offsets

Instructions such as if-eqz use a code offset as a target to jump to. Although the offset appears
in smali code as a human-readable label (e.g., “:catch_0”), the compiler actually replaces all
offset labels with hexadecimal values. Those values are stored using a signed short (16-bit), so
it must not exceed the range (-32767, 32768) [3]. Of course a program may need to jump to an
instruction that is more than +/- 32768 bytes away. In such cases the compiler will write smali
code that will first jump to a relatively close location, and then immediately use a goto/32 (32-
bit) instruction to jump to the final destination. When stigma adds new smali instructions, the
distance between jump instruction(s) and the jump destination(s) is inadvertently increased.
So the 16-bit offset constraint may be un-intentionally violated resulting in invalid smali code.

7 Evaluation & Case Studies

To evaluate the compatibility across many commodity Android applications, we acquired 100
random popular applications and ran Stigma on them.

First, we downloaded 31 random, popular applications from https://APKMirror.com and,
for each application, we processed it with Stigma using our prototype DIFT plugin. If successful
we installed and ran that app on an Android device. We found that approximately 45% of the
apps we tested (14/31) had some sort of compatibility problem with the 3rd party depedency
apktool, making it impossible to fully evaluate Stigma on that app. Of the remaining 17 apps,
only 11.76% of them (2/17) had some sort of compatibility problems with Stigma itself. Of
those 15/31 apps that appeared to be fully compatible, Stigma was able to identify and track
the use of GPS location information in 6 apps.

Similarly, we downloaded an additional 67 random, popular applications from https://
APKMirror.com and, for each application, we processed it with Stigma using our prototype
SharedPreferences plugin. We found that approximately 26% of the apps (18/67) had some
sort of compatibility problem with apktool. From the remaining 49 apps, we were able to
extract “Shared Preferences” data from 59% of them (29/49).

Overall, the ability of Stigma to correctly modify smali code is actually very high when
considering the significant amount of changes it makes to an application. For example, when
running Stigma with the DIFT plugin on our internal testing application “Stigma Test App” it
modifies approximately 2300 files. Even though the application itself consists of only a handful
of Java / Smali files, the support libraries are packaged into the app by the Android build system
and Stigma modifies all of them. Stigma interleaves approximately 1.2 million new assembly
instructions into these 2300 files without introducing any obvious bugs into the app whatsoever.
For applications that we find to be not compatible, they typically use some advanced features
of the Android framework.

7.1 LOC Overhead

To measure the overhead of the new instructions added by Stigma, we compare the number of
lines of code in an application before and after Stigma is run with the DIFT plugin (which adds
many more lines of code than our other prototype plugin). We compiled a short list of 5 “case
study” applications. Three applications were selected from a list of popular Android applica-
tions. One (Open Chaos Chess) was selected from the open-source FDroid application market.
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Figure 3: Lines of code added by instrumentation.

And the final application is a simple, self-made application used for testing and development of
Stigma. All five are listed below. The LOC analysis is shown in Fig

0. “Weather” weather forecasts - com.macropinch.swan
version: 5.1.7

1. “GroupMe” messaging application - com.groupme.android
version: 5.54.4

2. “Open Chaos Chess” chess game - dev.corruptedark.openchaoschess
version: 1.7.0

3. “Office Documents Viewer” office suite

de.joergjahnke.documentviewer.android.free
version: 1.29.13

4. “Stigma Test App” internal test application -
version 0.1

The lines of code, both before and after modification, are measured as any non-blank lines
of smali assembly code. This includes comments, function signatures, field declarations, etc.
in addition to actual opcodes / instructions. Therefore, some lines of code added don’t incur
much, if any, computational overhead. As a byproduct of the design of Stigma, many class
fields are added to the application, which forms the bulk of the new lines of code shown in this
analysis. As is shown in Fig. [3] our implementation increases the lines of code by about a factor
of 2.5x.
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Process VIRT before/after | RES before/after
Weather 4.3 / 4.4G 130M / 173M
Weather “remote” 41G / 4.1G 32M / 38M
Groupme 4.2G / 4.3G 111M / 143M
Groupme “sync” 4.1G / 4.2G 56M / 69M
Open Chaos Chess 42G / 4.2G 135M / 135M
Document Viewer 4.4/ 4.4G 139 / 151M
Stigma Test App 411G / 4.1G 62M / 67M

Table 1: Memory overhead before and after instrumentation.

7.2 Memory Usage

Lines of code added to the application don’t tell the full story of overhead. To investigate further
we measure the memory usage of applications on launch. For each application, we launched
and performed basic functionality (logging in, starting a game, etc.) The top command on
the Android command line (adb shell) is used to examine the memory usage. This was done
before any instrumentation and again after. Results are shown in Table [Il VIRT represents
the total size of the virtual address space for that process. RES represents the actual physical
memory in use (“REServed”) for that process. Although there is some memory overhead, it
is relatively small. This is likely due to the fact that in-memory data structures and code are
insignificant compared with common assets such as audio, and images that already exist in most
apps and which Stigma does not add any.

7.3 CPU Overhead

A significant concern of Stigma is the hit to responsiveness and general performance of the
application. Empirically, the user experience of the applications is not substantially impacted
by the new code. The computational complexity of the original app code is generally not
changed, since our prototype plugins do not introduce any loops, recursion, or new function
calls.

Still, it is prudent to given an approximation of what type of overhead might be expected
by inserting new instructions. We wrote a simple Android application, which executes arbitrary
code similar to the code that might be inserted by Stigma to perform DIFT (i.e., mostly sget,
sput, and add-float instructions). We executed these instructions repeatedly in larger and
larger batches, each time measuring the amount of time it took to complete the batch. The
experiment was carried out on a Nexus 5x, which is a modest device released in 2015 running
a Hexa-core CPU: (4x1.4 GHz Cortex-A53 & 2x1.8 GHz Cortex-A57). The results can be seen
in Figl]

Generally, smali instructions incur a negligable amount of overhead. For an app of reasonable
size of 2 million lines of (smali) code, the entire code-base could be executed in only ~2/10 of
a second. So, it is not surprising that Stigma does not appear to impact the responsiveness or
performance of the apps we tested. Usually, Android app performance and responsiveness is not
CPU-bound, but rather I/O bound. “Blocking” operations such as network download/upload,
and database queries are a more prevelant concern for developers.
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Lines of smali code vs. time to compute

1000 - éMaximurr_\ number of lines
:in an entire app

800 -

v 600
E
Q
£

" 4001

200 A

O -

0.0 0.2 0.4 0.6 0.8 1.0
Lines of smali code le7

Figure 4: Time incurred by smali instructions.

8 Conclusion

Modifying the smali byte-code of commodity Android applications is a promising, foundational
technique. Unfortunately, most of the tools and systems created in this area have a singular
purpose and many are never released. Recent published works from the literature usually don’t
reveal the critical details necessary to safely modify smali code. In this work we uncover critical
concepts for modifying smali code, higlight pitfalls that researchers will experience, and offer
an open-source prototype implementation called Stigma. Our work aims to support and inspire
future research efforts in this area.
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