
Stigma: A Tool for Modifying Closed-Source

Android Applications*

Ed Novak1, Shaamyl Anwar2, Saad Mahboob3

Shokhinabonu Tojieva4, and Chelsea Rao5

Computer Science Department

Franklin and Marshall College

Lancaster, PA 17604
1enovak@fandm.edu, 2mshaamylanwar@gmail.com, 3saadmahboob3@gmail.com

4shokhinatojieva@gmail.com, 5crao@fandm.edu

Abstract

A di�cult but potentially powerful advanced software engineering
concept is to modify existing, compiled, closed-source applications to
identify and potentially remedy security and privacy issues. This tech-
nically challenging concept is very applicable to the Android ecosystem,
but existing approaches are bespoke, use-case speci�c implementations.
In this paper we present Stigma, an open-source software tool which can
make modi�cations to commodity Android applications. Our tool allows
researchers and skilled users to de�ne their own desired modi�cations
for a range of purposes such as security and privacy analysis, improving
app functionality, removing unwanted features, debugging, pro�ling, and
others. We evaluate Stigma in terms of compatibility, e�cacy, and
e�ciency on approximately 100 commodity Android applications.

1 Introduction

Android smartphone applications are most commonly pre-compiled and closed-
source. This makes their functionality rigid and somewhat opaque, leading to

*Copyright©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or speci�c permission.

1



security concerns and contributing negatively to the general trend of concerns
about user privacy. We seek to provide tools that modify and analyze the
behavior of these closed-source applications. Such tools could one day be used
to perform a variety of tasks such as identifying app uses of sensitive informa-
tion, searching for security vulnerabilities, �xing bugs, and even improving app
functionality independently of the original developer.

Unfortunately modifying commodity Android apps is generally only done
in very limited ways via custom �t, temporary, and largely manual processes.
Although reverse engineering and �cracking� / �modding� exists in a limited
sense in the Android community, these e�orts are largely disconnected and lack
big picture strategies. Many of the existing research projects in this area [16,
11, 17] do not seem to be available, and therefore cannot be feasibly replicated,
embraced, or extended. Furthermore, these legacy projects have usability and
compatibility limitations [4].

Modifying apps is di�cult due to the fact that the source code is not avail-
able. Instead users and tools must operate directly on the byte-code (machine
code for a virtual machine). Writing byte-code directly is di�cult due to
numerous esoteric constraints, non-obvious syntax rules, and few conveniences
most programmers take for granted (e.g., for loops). Additionally, the Android
framework, runtime environment, and build system are complex leading to
bespoke techniques and tools.

In this paper we present Stigma [13]; an open source (GPLv3), command
line, python program which can help users make modi�cations to Android
applications for security and privacy analysis. Users �rst obtain the Android
Package (APK) of an app, which is used as input. Plugins, written in python for
Stigma, determine what alterations will be made to the app. A new, modi�ed
APK is output, which can be run on any target device that the original
APK was compatible with. No modi�cations are necessary to the device or
OS itself making for easier reproducibility and long term compatibility. The
contributions of this paper are as follows:

� We present the design and prototype implementation of Stigma, our open
source and extensible software tool for modifying Android apps.

� As an exemplary use of Stigma, we implement (and also distribute in
open source) two Stigma plugins. The �rst is a dynamic information
�ow tracking (DIFT) plugin and the second is a �SharedPreferences�
extraction plugin.

� We highlight the esoteric details of the �reference pools� in the DEX �le
format, which to the best of our knowledge, have not been documented
extensively elsewhere.

2



� We evaluate Stigma and our two plugins on approximately 100 popular
Android applications. We seek to measure the compatibility of Stigma
with arbitrary Android applications as well as the overhead incurred on
the application.

2 Related Work

The most closely related works are �Dr. Android and Mr. Hide� [10], and
�SIF� [9] in which the smali assembly code of Android apps is modi�ed directly
and automatically. �Dr. Android� makes limited modi�cations in the narrow
scope of implementing a more �ne grained permission system. SIF asks the
user to specify their desired modi�cation in a language called �SIFScript.� The
SIFScript includes the functionality itself as well as the general places and
times in which the functionality should be inserted (called the �workload�).
These works were published in 2012 and 2013 respectively. Due to their age, it
is very likely that they are no longer compatible with modern Android. They
seem to be orphaned and don't appear to be readily available online.

2.1 DIFT Systems

One relevant sub�eld is that of dynamic information �ow tracking (DIFT), in
which code is added into the target app to track and alert the user about the
use of their own sensitive and/or personal, identi�able information (PII). This
is the idea implemented by our Stigma plugin described in Section 4. Some of
the most relevant works in this area include ViaLin [1], TaintMan [16], TaintArt
[15], TaintDroid [8], AppCaulk [11], ConDySTA [18], and Capper [17].

2.2 Community Projects

Some less formal, community based e�orts include the Cydia Substrate for
Android [5], the (apparently defunct) Xposed Framework, and Android DDI
[7] which allows the user to write their modi�cations using the Java Native
Interface (JNI). None of these projects seem to have accompanying publications
in peer reviewed conferences or journals.

2.3 Limitations of the Related Work

The existing works in this area all su�er from at least one of two critical �aws.
Either the software described was never released to the public, or the system
design has signi�cant compatibility and usability concerns. Some projects
exhibit both problems. Compatibility and usability concerns include requiring
substantial changes to the Android OS, the Android Framework, the dex2oat

3



compiler, rooting, or changing other aspects of the platform / device itself
instead of the app. These approaches are di�cult for others to setup, brittle,
and become outdated quickly as the Android OS is continually updated. In
contrast, our system is carefully designed to follow the semantics of smali / dex
byte-code itself, which is a standard that hasn't changed substantially since the
introduction of Android.

3 Stigma System Design

Figure 1: Stigma system architecture.

Stigma [13] is a fully
open-source python pro-
gram that accepts an
APK �le as input, and
outputs a modi�ed ver-
sion of that APK �le.
The modi�cations made
are speci�ed by plug-
ins, which are written
by the user. As a
proof of concept, Stigma
comes with two pre-
written plugins. One
performs DIFT, which
seeks to track the use
of location (GPS coordi-
nate) data. The other
inserts code such that
the app prints the keys
and values of the de-
fault SharedPreferences
database when the app
is launched. Further
information about these

two plugins is given in Sec. 4 and 5. Other plugins can be imagined and
implemented that allow researchers and other power users to specify precisely
what modi�cations should be made to the app.

An overview of the architecture of the system can be seen in Fig. 1. First
1O a third party tool apktool[3], is used to extract the Dalvik byte-code
(DEX1) from the application and convert it to the assembly-like smali [12,

1DEX is designed to be run on a Java Virtual Machine (JVM), but in the modern Android
ecosystem, it probably never will be. Instead, the DEX2OAT compiler is invoked at install

4



2] language 2O. Stigma then parses these smali �les into an intermediate
representation (IR) 4O. Stigma maintains in-memory representations (objects)
for smali classes, smali methods, registers, and basic data-types (32-bit, 64-bit,
and object references). Plugin logic is applied to the IR. Then in step 6O, the
code must be �re-balanced� to account for the constant pool limits as described
in Section 3.1. Finally, the modi�ed IR is written back to smali �les on disk.
The modi�ed smali �les 7O, along with any new smali classes added by the
plugin(s), are re-packed using the same third party tool apktool 8O. The end
result is an APK, digitally signed by Stigma, which can be installed on any
device for which the original, input APK was compatible.

Stigma parses and allows the user to modify the smali assembly code of
the target app. The original Java or Kotlin source code is not available, due
to most apps being distributed close-sourced. And the immediately available
DEX byte-code is not human readable, making it near impossible for users to
de�ne plugins for DEX directly.

As mentioned previously, the smali classes, methods, instructions, registers,
and types of the original app are all represented in-memory by python objects.
Stigma also builds a control �ow graph for every method in the app, and
does type analysis such that it can determine the known type of every data
value stored in every register at any point in the execution. Of course, there
are many points where the type information is unknown or unde�ned. For
example, at the very beginning of a method most of the temporary, general
purpose registers are empty and therefore have no type.

3.1 Reference Pools

As mentioned very brie�y in the o�cial Dalvik documentation �There are sep-
arately enumerated and indexed constant pools for references to strings, types,
�elds, and methods.� [6]. This means that in a single DEX �le (comprised of
many smali �les) all references to (1) strings, (2) types, (3) class �elds, and
(4) methods are collected into respective sets. Each set may contain at most
65,535 entries since the pools are enumerated using an unsigned short.

As applications have grown larger and larger, it has become increasingly
common for a single Android application to exceed the 65k limit on one or
more of the pools. To alleviate this the code is distributed into multiple DEX
�les (classes.dex, classes2.dex, classes3.dex, etc.) such that none of
the pools are overloaded. Normally this is done by the dx converter (from
the Android SDK) which converts Java .class �les to Android .dex �les.
But, Stigma modi�es the code after it has been converted to DEX, and so any

time to convert the DEX code to machine code matching the architecture of the device. The
app is then run on that device via the Android RunTime (ART).

5



1 .class public Lcom/example/stigmatestapp/MainActivity;

2 .super Landroidx/appcompat/app/AppCompatActivity;

3 .source "MainActivity.java"

4
5 # static fields

6 .field static final GREEN_TRANSPARENT:I = 0x6600ff00

7
8 # instance fields

9 .field sputgetText:Landroid/widget/TextView;

10
11 # direct methods

12 .method public constructor <init >()V

13 .locals 0

14
15 .line 19

16 invoke -direct {p0}, Landroidx/appcompat/app/

AppCompatActivity;-><init >()V

17
18 return -void

19 .end method

Listing 1: Sample code used to demonstrate how the constant reference pools
are tabulated. This listing contains 9 string references, 5 type references, 2
�eld references, and 2 method references.

changes it makes that alter the amount of items in the pools may cause those
pools to over�ow and for the app to fail to compile / run.

Properly organizing a collection of smali �les into an appropriate number
of DEX �les is not straightforward, since it is not clear how various smali
instructions impact the four pools. To our knowledge, this relationship is not
explained in any pre-existing documentation. The smali command line tool
[12] can be used to create a DEX �le from a single smali �le. The resulting
DEX �le will likely be unable to run, since it does not even contain some of the
necessary foundation code such as the Android support libraries. But, such
a DEX �le can be analyzed by the dexdump tool, from the Android SDK, to
precisely determine how the code therein contributes to each pool. Using this
tool-chain we are able to reverse engineer the relationship between smali code
and the four pools.

Consider the code sample in Listing 1. According to dexdump, the DEX �le
containing only this class contains 9 string references, 5 class/type references,
2 �eld references, and 2 method references.

� Strings (9 total) - The class name and parent class name on lines 1
and 2 account for two strings. And, line 3 contains a literal string. These
strings are used, presumably, for debugging purposes such as stack traces,

6



and compiler warnings as well as for Java re�ection. Each of the �elds
declared on lines 6 and 9 contribute two string references each (one for
the identi�er, and another for the type). Finally, the method declaration
on line 12 contributes two string references, (one for the method name,
and the other for the method return type).

� Types (5 total) - The class and parent class on lines 1 and 2 are types.
The I in the �eld declared on line 6 is a type (integer). The TextView ref-
erenced on line 9 is a type. And, the V indicating that the <init> method
returns void, is a type. Note that the reference to AppCompatActivity

on line 16 is not counted, because it is redundant with the reference on
line 2.

� Fields (2 total) - This class references only two �elds (as declarations)
on lines 6 and 9.

� Methods (2 total) - This class references only two methods. The decla-
ration of MainActivity.<init> on line 12 and the call
to AppCompatActivity.<init> on line 16.

Stigma uses this logic to distribute smali �les into a number of classesX.dex
�les appropriately. It is important to note that smali instructions need no
modi�cations or special access rights in order to reference the classes, �elds,
and methods of smali �les in other DEX �les. Access rights are restricted only
by the traditional Java access modi�ers public, private, and protected.

3.2 Extensible Plugin Framework

Without any active plugins, Stigma will not make any changes to the target
app. How should intended changes be speci�ed? In our system, plugins specify
callback handler functions. The callback handler function itself is written by
the plugin author / user, specifying which key points it should be invoked on.
These functions return new smali code that is inserted into the app at key
point(s).

The handlers are invoked as the original application code is linearly iterated
over. They can be called or triggered at various key points in the target app.
First they can be called at the point in the app at which the app is launching.
This is similar to �the start of the main()� in a traditional program. Second
they can be called at the start of each original smali method. Finally, the
most intricate trigger is applied individually to each of the 200+ types of smali
instructions.

Stigma provides an �Instrumenter� class, which has a method sign_up().
Plugins can call the sign_up() method in order to register callbacks as shown
in Fig. 2.

7



Figure 2: Example of a call to sign_up() made by a plugin registering a
callback handler for the invoke-virtual smali instruction.

3.3 Other Implementation Challenges

Although smali assembly is the most user friendly form of the code to work
with, there are still several technical details that must be accounted for when
writing or modifying smali code. Stigma accounts for many of them automat-
ically. Speci�cally, extracting the code from an APK �le and converting it
to smali, allocating and identifying machine registers that are free to use by
the plugin code, accounting for code o�set value limits, avoiding unintentional
changes to control �ow, correctly allocating �reference pools� among DEX �les
(as discussed in Sec. 3.1), and re-packing the modi�ed smali code back into a
usable APK with a valid cryptographic signatures.

Many of these esoteric and complex details of the smali and DEX languages
are not well documented. Interested readers can see our technical report [14].

4 DIFT Plugin

As a proof of concept, we design a plugin for Stigma that implements dynamic
information �ow tracking (DIFT) of sensitive user information. Our plugin
registers a variety of handlers for many smali instructions to (1) originate, (2)
propagate, and (3) terminate tags that mark sensitive data. It also registers a
handler for the start of each method to propagate tag values from the function
parameters / inputs. The plugin essentially speci�es new smali instructions,
which Stigma inserts amongst the original app instructions, to implement the
logic of sensitive information marking and tracking. Our plugin has several
limitations (it is only a prototype), which are given in our technical report [].

4.1 Tag Origination

For tag origination, Stigma identi�es several key functions from the Android
API that can be used to obtain sensitive data. For example,
LocationManager.getLastKnownLocation(String provider), which is one
method used to obtain the device's GPS coordinates. When this instruc-
tion/method call is identi�ed in the smali assembly code, our Stigma plugin
interleaves instructions to store a tag value on the register used to store the
return value.

8



4.2 Tag Propagation

When a tag is applied to a register, that tag value should �ow as the data in
that register �ows. For example, if the data is copied to another register or
passed to a function, the tag should also �ow. Our DIFT plugin interleaves
new smali instructions to move the tag values, triggered by roughly 85 of the
almost 250 smali instructions that move data.

4.2.1 Propagating Tags Across Function Calls

Well written Java code makes heavy use of methods. In order to track sensitive
information in and out of method calls, we split all methods into two categories:
�internal� and �external�. Internal methods are all those de�ned in the smali
code contained in the target APK �le. External methods are those for which
their smali source code is unattainable. For example, java/lang/StringBuilder
is provided by the runtime so the code is not included in the APK.

For internal method calls, the tags for the arguments (at the call site) need
to be propagated to the parameters (at the de�nition / callee site). At the
call site, new instructions are added just before the function call. The tags for
the method arguments are read (e.g., public static CallingClass_foo_-

v1_TAG:F) and then written into the tag locations for the method parameters
at the callee site (e.g., public static CalleeClass_bar_p0_TAG:F).

When a method returns (keeping in mind there may be more than one
return point) the returned value may contain sensitive information. Therefore,
for every return instruction, the tag value of the returned register is copied into
the special global tag �eld public static return_field_TAG:F. At the call
site, the tag value is extracted from that �eld and propagated to the speci�ed
destination register.

4.3 Tag Termination

For (3) tag termination, Stigma identi�es certain functions which indicate data
transmission. In the current implementation this is limited to the various
write()methods of java/io/OutputStreamWriter; and java/io/OutputStream;.
These are used in network socket I/O and �le I/O. When such a method
is identi�ed, our plugin writes new instructions into the application which
retrieves the tag value associated with each of the input parameters. If the tag
value of any parameter is not zero, an entry is written to the Android system
log (logcat) alerting the user that sensitive information is being leaked.

9



5 SharedPreferences Extraction Plugin

�SharedPreferences� is an often used API in the Android framework. It allows
app developers to store key-value pair information. Traditionally, it is intended
to store the user's innocuous preferences that are speci�c to an app (e.g.,
repeat or shu�e in a music player app). Occasionally, developers store things
that they should not, introducing security risks and vulnerabilities. Examples
include plaintext passwords, private information, booleans to control paid only
features, and encryption keys.

We wrote a plugin for Stigma that forces the app to print the entire contents
of the default SharedPreferences database when the app is launched. This
allows the user to search for suspicious or obviously improper use. Although
there are other methods of obtaining the SharedPreferences contents, ours does
not require rooting or modifying the OS / device. Additionally, our approach
operates during runtime. Which is important, since applications that have not
been run in a realistic way likely will not have added any actual values to the
SharedPreferences database.

5.1 Implementation Details

Our plugin adds roughly 50 smali assembly instructions to application that
invokes the Android SharedPreferences API. Since our code is inserted into
the app itself, it runs with same privileges that app has. We simply iterate
over the returned HashMap and print the values using the built-in Android
logging system (logcat).

Finding the starting point of the application is not straightforward since
Android applications follow an event driven architecture and there is no tradi-
tional main() function. To �nd the starting point of the application, Stigma
parses the associated AndroidManfiest.xml �le for activity and activity

alias instances that specify the �LAUNCHER� attribute. The new code is then
inserted into those activities at the start of the onCreate() method.

6 Evaluation & Case Studies

To evaluate the compatibility across many commodity Android applications,
we acquired 100 random popular applications from https://APKMirror.com

and ran Stigma on them.
First, we selected approximately 31 applications and, for each, we processed

it with Stigma using our prototype DIFT plugin. If successful we installed and
ran that app on an Android device. We found that approximately 45% of
the apps we tested (14/31) had some sort of compatibility problem with the
3rd party depedency apktool, making it impossible to fully evaluate Stigma

10

https://APKMirror.com


on that app. Of the remaining 17 apps, only 11.76% of them (2/17) had
compatibility problems with Stigma itself. Of those 15/31 apps that appeared
to be fully compatible, Stigma was able to identify and track the use of GPS
location information in 6 apps.

Similarly, for the remaining 67 random applications we processed each of
them using Stigma with our prototype SharedPreferences plugin. We found
that approximately 26% of the apps (18/67) had some sort of compatibility
problem with apktool. From the remaining 49 apps, we were able to extract
SharedPreferences data from 59% of them (29/49).

Stigma is not able to obtain GPS data or SharedPreferences data from
every app. In the vast majority of cases where it was not, the reason is simply
because the app in question doesn't appear to utilize location data or the
SharedPreferences API at all.

6.1 LOC Overhead

To measure the overhead of the new instructions added by Stigma, we compare
the number of lines of code in an application before and after Stigma is run
with the DIFT plugin (which adds many more lines of code than our other
prototype plugin). We compiled a short list of 5 �case study� applications.
Three applications were selected from a list of popular Android applications.
One (Open Chaos Chess) was selected from the open-source FDroid application
market. And the �nal application is a simple, self made application used for
testing and development of Stigma. All �ve are listed below. The LOC analysis
is shown in Fig 3a.

1. �Weather� weather forecasts - com.macropinch.swan
version: 5.1.7

2. �GroupMe� messaging application - com.groupme.android
version: 5.54.4

3. �Open Chaos Chess� chess game - dev.corruptedark.openchaoschess
version: 1.7.0

4. �O�ce Documents Viewer� o�ce suite
de.joergjahnke.documentviewer.android.free

version: 1.29.13

5. �Stigma Test App� internal test application -
version 0.1

The lines of code, both before and after modi�cation, are measured as
any non-blank lines of smali assembly code. This includes comments, function

11



0 1 2 3 4
Application

0

1000000

2000000

3000000

4000000

5000000

Lin
es

 o
f C

od
e 

(n
on

-b
la

nk
)

Lines of code added by Instrumentation
Orignal LOC
After Stigma

(a) Lines of code added by Stigma.

0.0 0.2 0.4 0.6 0.8 1.0
Lines of smali code 1e7

0

200

400

600

800

1000

Ti
m
e 
(m

s)

Maximum number of lines
in an entire app

Lines of smali code vs. time to compute

(b) Time incurred by smali instructions.

signatures, �eld declarations, etc. in addition to actual opcodes / instructions.
Therefore, some lines of code added don't incur much, if any, computational
overhead. As a byproduct of the design of Stigma, many class �elds are added
to the application, which forms the bulk of the new lines of code shown in this
analysis. As is shown in Fig. 3a our implementation increases the lines of code
by about a factor of 2.5x.

6.2 Memory Overhead

We also measure the memory usage of applications on launch. For each appli-
cation, we launched and performed basic functionality (logging in, starting a
game, etc.) The top command on the Android command line (adb shell) is
used to examine the memory usage. This was done before any instrumentation
and again after. Results are shown in Table 1. VIRT represents the total size of
the virtual address space for that process. RES represents the actual physical
memory in use (�REServed�) for that process. Although there is some memory
overhead, it is relatively small. This is likely due to the fact that in-memory
data structures and code are insigni�cant compared with common assets such
as audio, and images that already exist in most apps and which Stigma add
none.

6.3 CPU Overhead

A signi�cant concern of Stigma is overhead it might incur in responsiveness and
performance of the application. Empirically, this impact is imperceptible. The
computational complexity of the original app code is generally not changed,
since our prototype plugins do not introduce any loops, recursion, or new
function calls.

12



Process VIRT before/after RES before/after
Weather 4.3 / 4.4G 130M / 173M
Weather �remote� 4.1G / 4.1G 32M / 38M
Groupme 4.2G / 4.3G 111M / 143M
Groupme �sync� 4.1G / 4.2G 56M / 69M
Open Chaos Chess 4.2G / 4.2G 135M / 135M
Document Viewer 4.4 / 4.4G 139 / 151M
Stigma Test App 4.1G / 4.1G 62M / 67M

Table 1: Memory overhead before and after instrumentation.

To estimate the CPU overhead more precisely we wrote a simple Android
application, which executes arbitrary assembly code similar to the code that
might be inserted by Stigma to perform DIFT. We executed these instructions
repeatedly in larger and larger batches, each time measuring the amount of time
it took to complete the batch. The experiment was carried out on a Nexus 5x,
which is a modest device released in 2015 running a Hexa-core CPU: (4x1.4
GHz Cortex-A53 & 2x1.8 GHz Cortex-A57). The results can be seen in Fig.3b.

Generally, smali instructions incur a negligable amount of overhead. For an
app of reasonable size of 2 million lines of (smali) code, the entire codebase could
be executed in only ∼2/10 of a second. Usually, Android app performance is
not CPU-bound, but rather I/O bound.

7 Conclusion

Modifying the code of commodity Android applications is a promising, founda-
tional technique. Unfortunately, most of the tools and systems created in this
area have a singular purpose and many are never released. Recent published
works from the literature usually don't reveal the critical details necessary
to safely modify smali code. In this work we uncover critical concepts for
modifying smali code, highlight pitfalls that researchers will experience, and
o�er an open-source prototype implementation called Stigma. Our work aims
to support and inspire future research e�orts in this area.

References

[1] Khaled Ahmed et al. �ViaLin: Path-Aware Dynamic Taint Analysis for
Android�. In: Proceedings of the 31st ACM Joint European Software En-

13



gineering Conference and Symposium on the Foundations of Software En-
gineering. ESEC/FSE 2023. <conf-loc>, <city>San Francisco</city>,
<state>CA</state>, <country>USA</country>, </conf-loc>: Asso-
ciation for Computing Machinery, 2023, pp. 1598�1610. isbn: 9798400703270.
doi: 10.1145/3611643.3616330. url: https://doi.org/10.1145/
3611643.3616330.

[2] Android Instrumentation with Smali: A survival guide. Available At: http:
//paulsec.github.io/posts/android-smali-primer/. 2020.

[3] APKtool Project Source Code. Available At: https://ibotpeaches.
github.io/Apktool/. 2022.

[4] Fabian Berner. and Johannes Sametinger. �Dynamic Taint-tracking: Di-
rections for Future Research�. In: Proceedings of the 16th International
Joint Conference on e-Business and Telecommunications - Volume 2:
SECRYPT, INSTICC. SciTePress, 2019, pp. 294�305. isbn: 978-989-758-
378-0. doi: 10.5220/0008118502940305.

[5] Cydia Substrate for Android. Available At: http://www.cydiasubstrate.
com/. 2014.

[6] Dalvik Byte-Code Documentation. Available At: https://source.android.
com/devices/tech/dalvik/dalvik-bytecode. 2022.

[7] DDI, Dynamic Dalvik Instrumentation Toolkit. Available At: https://
github.com/crmulliner/ddi. 2022.

[8] William Enck et al. �TaintDroid: An Information-�ow Tracking System
for Realtime Privacy Monitoring on Smartphones�. In: Proceedings of the
9th USENIX Conference on Operating Systems Design and Implemen-
tation. OSDI'10. Vancouver, BC, Canada: USENIX Association, 2010,
pp. 393�407. url: http://dl.acm.org/citation.cfm?id=1924943.
1924971.

[9] Shuai Hao et al. �SIF: A Selective Instrumentation Framework for Mobile
Applications�. In: Proceeding of the 11th Annual International Conference
on Mobile Systems, Applications, and Services. MobiSys '13. Taipei, Tai-
wan: Association for Computing Machinery, 2013, pp. 167�180. isbn:
9781450316729. doi: 10.1145/2462456.2465430. url: https://doi.
org/10.1145/2462456.2465430.

[10] Jinseong Jeon et al. �Dr. Android and Mr. Hide: Fine-Grained Permis-
sions in Android Applications�. In: Proceedings of the Second ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices. SPSM
'12. Raleigh, North Carolina, USA: Association for Computing Machin-
ery, 2012, pp. 3�14. isbn: 9781450316668. doi: 10 . 1145 / 2381934 .

2381938. url: https://doi.org/10.1145/2381934.2381938.

14

https://doi.org/10.1145/3611643.3616330
https://doi.org/10.1145/3611643.3616330
https://doi.org/10.1145/3611643.3616330
http://paulsec.github.io/posts/android-smali-primer/
http://paulsec.github.io/posts/android-smali-primer/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.5220/0008118502940305
http://www.cydiasubstrate.com/
http://www.cydiasubstrate.com/
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://github.com/crmulliner/ddi
https://github.com/crmulliner/ddi
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
https://doi.org/10.1145/2462456.2465430
https://doi.org/10.1145/2462456.2465430
https://doi.org/10.1145/2462456.2465430
https://doi.org/10.1145/2381934.2381938
https://doi.org/10.1145/2381934.2381938
https://doi.org/10.1145/2381934.2381938


[11] J. Schutte, D. Titze, and J. M. de Fuentes. �AppCaulk: Data Leak
Prevention by Injecting Targeted Taint Tracking into Android Apps�.
In: 2014 IEEE 13th International Conference on Trust, Security and
Privacy in Computing and Communications. 2014, pp. 370�379. doi:
10.1109/TrustCom.2014.48.

[12] Smali Project Source Code. Available At: https://github.com/JesusFreke/
smali. 2022.

[13] Stigma Source Code. Available At: https://github.com/fmresearchnovak/
stigma. 2022.

[14] Stigma Technical Report. Available At: http://ednovak.net/documents/
stigma_tr.pdf. 2024.

[15] Mingshen Sun, Tao Wei, and John C.S. Lui. �TaintART: A Practical
Multi-level Information-Flow Tracking System for Android RunTime�.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS '16. Vienna, Austria: ACM, 2016,
pp. 331�342. isbn: 978-1-4503-4139-4. doi: 10.1145/2976749.2978343.
url: http://doi.acm.org/10.1145/2976749.2978343.

[16] W. You et al. �TaintMan: An ART-Compatible Dynamic Taint Analysis
Framework on Unmodi�ed and Non-Rooted Android Devices�. In: IEEE
Transactions on Dependable and Secure Computing 17.1 (Jan. 2020),
pp. 209�222. issn: 1941-0018. doi: 10.1109/TDSC.2017.2740169.

[17] Mu Zhang and Heng Yin. �E�cient, Context-Aware Privacy Leakage
Con�nement for Android Applications without Firmware Modding�. In:
Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security. ASIA CCS '14. Kyoto, Japan: Association for
Computing Machinery, 2014, pp. 259�270. isbn: 9781450328005. doi: 10.
1145/2590296.2590312. url: https://doi.org/10.1145/2590296.
2590312.

[18] Xueling Zhang et al. �ConDySTA: Context-Aware Dynamic Supplement
to Static Taint Analysis�. In: 2021 IEEE Symposium on Security and
Privacy (SP). 2021, pp. 796�812. doi: 10.1109/SP40001.2021.00040.

15

https://doi.org/10.1109/TrustCom.2014.48
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/fmresearchnovak/stigma
https://github.com/fmresearchnovak/stigma
http://ednovak.net/documents/stigma_tr.pdf
http://ednovak.net/documents/stigma_tr.pdf
https://doi.org/10.1145/2976749.2978343
http://doi.acm.org/10.1145/2976749.2978343
https://doi.org/10.1109/TDSC.2017.2740169
https://doi.org/10.1145/2590296.2590312
https://doi.org/10.1145/2590296.2590312
https://doi.org/10.1145/2590296.2590312
https://doi.org/10.1145/2590296.2590312
https://doi.org/10.1109/SP40001.2021.00040

	Introduction
	Related Work
	DIFT Systems
	Community Projects
	Limitations of the Related Work

	Stigma System Design
	Reference Pools
	Extensible Plugin Framework
	Other Implementation Challenges

	DIFT Plugin
	Tag Origination
	Tag Propagation
	Propagating Tags Across Function Calls

	Tag Termination

	SharedPreferences Extraction Plugin
	Implementation Details

	Evaluation & Case Studies
	LOC Overhead
	Memory Overhead
	CPU Overhead

	Conclusion

